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I. Introduction

\The ion-cyclotron instability has been of considerable interest in the
study of space, as well as laboratory plasmas.1‘9 Various non-local aspects
due to magnetic shear were discussed”by Ganguli, Palmadessc and the present
author.”,6,€,9. A novel mechanism for the generation of electrostatic ion-
cyclotron like modes was recently proposed by Ganguli, Lee and Palmadesso.l0
. According to this picture, a non-uniform transverse electric field produces
regions of negative and positive wave energies and a non~local wave packet can
couple these domains, with a resultant transfer of energy which allows the
wave mode to grow. The dispersion relation for a sharp boundary electric
field had been developed which brought out the essential physical mechanism
for the instability. To develop a treatment for an electric field with a
smooth profile and determine the ensuing changes in the dispersion relation
was one of the problems to be explored. Going beyond the second order
differential equation formulation was another generalization to be considered.
Also to be considered was the comparison of the above mentioned instability

with the Relvin-Helmholtz instability for the corresponding field profiles.
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I1. Accomplishments

A brief summary of the contributions made during the grant period is given
below.

More realistic continuous velocity profiles Vg(y,L,a) were consideredl!l
instead of the previous, piecewise continuous (top-hat) modell0, The overall
width of the velocity profile is governed by the parameter L, while the
parameter a provides a continuous transition from the piecewise continuous
profile (a=0), through a sequence of increasingly smoother profiles, to a
Gaussian. Altso considered were a trapezoid profile of overall width L and
Steepness parameter a, and a generalized sechZ(x/a) profile. The Numerov
(shooting code) technique was used to solve numerically the second order
differential equation to find the eigenmodes for the Ion Cyclotron (IC)-like
mode.

Corresponding analysis was also carried out!l for the trapezoid and
generalized sechz(x/a) profiles to determine the growth rates for the
Kelvin-Helmholtz (KH) instability. An analytical solution can be given for the
trapezoid profile.

The main conclusions were (i) a magnetized plasma with transverse electric
field is unstable to two modes, KH for long wavelengths (kp;<<1) and IC for
kpi»1l; (ii) the KH mode is important when ka<l, and dominates for steeper
profiles; (iii) the new mode (IC) has a relativelv weak dependence on 'a' but
depends strongly on L. For smooth profiles (sech?(x/a)) the peak of the growth
rate for IC is comparable to the KH growth rate, and the two instability bands
are widely separated in R-space. This mode should thus be observable in
simulations or experiments; (iv) since a sharp profile quickly relaxes to a

smoother profile (increase in a), the IC type mode becomes dominant aftcr the
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initial tramsient dvnamics.

These results were presented at the AGU Meeting, December 1986 (Ref. 11,
copy of Abstract is attached.)

We have also considered the generalizations needed to go beyond the second
order differential equation descriptions. Explicit dispersion equations were
obtained for the 4th and b6th order differential equations level of description.
Also, all of thes2 ira succsessive approxinations fo a Iull integ
treatment. A full kinetic theory integral equation treatment was provided in
Ref. 12. Formal reduction leads to the diffefential equation descriptions for
the KH modes for kpj<<l and the IC-like modes for koj>l. (Copy of Ref. 12 is

attached.)
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A pev jnstability -ochuuu‘ giving rise to high’
frequensy short wavelength oscillstions in s sagnato~

plassi with transverse electric flelc was recently
proposed., That study was based on an 1deallzeq
(piecei'se constant) velocity prd'lll. We consider
more realistic profiles Vpix,l.a}, wheme variation of
the parageter a p-ovides a eonlmlaus trarsitior frog
the plecewise corstant profi through 8 sequence of
increasingly sa>other prafiles, an8 finally to ,
Gaussian. The overall width s governed by the .
parameter L. ¥e find that the grovih rate g
re.stively insensitive to the vwarlation of tne
ateepness pa~apeter a, but has 8 stronger Oepencerce
on the extent L. This conclusion 18 alsc borne out
for other profiles as well. We alss cotpare the
grovth rates for the fluld FKelvirhelsncitz
lnnllbilily with our results (considering 8 trapezcic
proile‘) and nota that, as say be erpected, the
Kelvin-Heimholitez is isportant for the long
wvavelength domal vhile the nev instadility iy
significant for the shorter wvavelengths, In faet, for
a wide range of paraseters, the two {ratadvility bands
are quite <lstinct on  the grovih rate  versus
wavelength plot, Yarjous scalings with physical
paraseters are Hscusnd. P
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A kinetic theory in the form of an integral equation is provided to study the electrostatic
oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform
transverse electric field. In the low temperature limit (k,p; <1, where k, is the wave vector in
the y direction and p, is the ion gyroradius) the dispersion differential equation is recovered for
the transverse Kelvin-Helmholtz modes for arbitrary values of &, where k, is the component
of the wave vector in the direction of the external magnetic field assumed in the z direction.
For higher temperatures (k,p, > 1) the ion-cyclotron-like modes described earlier in the
literature by Ganguli, Lee, and Palmadesso [Phys. Fluids 28, 761 (1985)] are recovered. In
this article the integral equation is reduced to a second-order differential equation and a study
is made of the kinetic Kelvin~Helmholtz and the ion-cyclotron-like modes that constitute the
two branches of oscillation in a magnetized plasma including a transverse inhomogeneous ac

electric field.

I. INTRODUCTION

Shear in the flow velocity of a fluid leads to the low
frequency and long wavelength Kelvin-Helmholtz (KH)
instability.! The velocity shear can be generated in a number
of ways. In a plasma the existence of an inhomogeneous elec-
tric field component transverse to the ambient uniform mag-
netic field can provide a transverse velocity shear. The evolu-
tion of the KH instability in this configuration has been
extensively studied.?

Recently some space observations® and laboratory ex-
periments* seem to indicate that ion-cyclotron-like waves
are observed for subcritical field aligned currents and there-
fore the origin of these waves is somewhat mysterious. A
crucial feature of these observations and experiments was
the presence of a transverse component of a zeroth-order
electric field. In order to study the role of the transverse
electric fields in the generation of the ion-cyclotron-like
waves™* we suggested a mechanism based on the coupling of
the negative energy ion Bernstein modes (or the ion-cyclo-
tron modes) in the region where the dc electric field is local-
ized, with the positive energy ion Bernstein modes (or the
cyclotron modes) in the region where the dc electric field is
absent.® This is similar to the negative energy wave growthin
an inhomogeneous mirror geometry.® In our initial theory
we idealized a typical electric field profile by a piecewise
continuous function for simplicity. The gradients of the elec-
tric field were ignored to avoid the KH modes for which the
second derivative of the electric field is necessary. Here we
use kinetic theory to obtain the general dispersion relation
rigorously, for the electrostatic oscillations in a plasma, in
the form of an integral equation for an arbitrary electric pro-
file. In various limits we reduce the integral equation to sec-
ond-order differential equations to obtain the eigenvalues.
The integral equation will be solved in a subsequent paper.

*' Permanent address: University of Maryland, College Park, Maryland
20742
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ll. THEQRY

The equation of motion of a charged particle in a uni-
form magnetic field in the z direction and a noruniform elec-
tric field in the x direction is given by

4 e LR+ v, (1)

dt* m
where Q) = eBy/mc is the gyrofrequency, and e, m, and B,
are the charge, mass, and the ambient uniform magnetic
field, respectively. The constants of the motion are (i)
H= (v} + v} +1})/2 + e¥(x)/m, the total energy, where
E(x) = —d¥(x)/dx; and (ii) X, =x + v,/Q, which is
obtained by integrating the y component of (1). Using
v, = Q{X, — x) in the expression for i we obtain the Ham-
iltonian for an equivalent one-dimensional problem:

H=0/240YX, —x)/2 + (e/m)¥(x). (2)

Minimizing the potential of (2) we obtain the guiding center
position

C=x+ [u, = Ve(5)]/9, (3)
another constant of the motion that is an implicit function of
X, and therefore is not an independent constant of motion.
Here V (£) = —cE(£)/B,.

It order to recover the fluid KH modes as the fluid limit
of the kinetic formalism, we will need to construct an equi-
librium distribution function using the constants of motion,
such that the equilibrium density is uniform or nearly so.
However, we would also like to be able to study the more
general case of an equilibrium with an arbitrary density pro-
file. Therefore, we will choose the distribution function to be
of the form fo(&H) =ny(&)F,(£,H), such that
SFy d?v=const. Then we obtain an appropriate f; for the
study of the classical KH mode by setting n,(&) = const,
and an appropriate £, for the general case by relaxing this
condition. Such a distribution function, which leads to an
equilibrium density uniform to O(¢) for a constant n,, where
€( == p, /L) is the smallness parameter, p, ( = v, /1, ) is the

' 1983 American Institute of Physics 823




ion gyroradius, and L is the characteristic length associated
with the external electric field, can be found by a systematic
procedure and is given by

Jo(&H) = Nexp( — BH)g(£), (4)

where N = ny(B/2m)*%, B =
and

g(&) = exp{B [e¥(&)/m + VE(£)2) (&)~
where 7(£) = 1 + V' (£)/€. The quantity 9 parametrizes

1/v2, v, is the thermal velocity,

the magnitude of the velocity shear. Note that there are two

crucial parameters in this problem: (i) % and (ii) €. We will

allow 7 to be arbitrary but positive while assuming e € 1. The .

equilibrium distribution can be expressed as

Sol&H) = Nexp[ — (B/2)u} ]

xexp[ — (8/2)0 }/7(E), (5)

'

where we have expanded the x dependence of (4) around £

and neglected terms of 0(6 3y and hlgher Here, wz 1s

w? =y’ +17(§)u + [V"(é’)/ﬂ’](u (u’) 3/3),

: ‘*‘h”‘m

ot T Ry i ek
whercu =, ~ (v,) and () mdrcates the tlme average It
should be noted that the simplified zeroth-order state as pro-
vided in Eq. 5, has a pathologlcal behavtor when u becomes,
very large. In our calculations’ we usée thc transformed co-
ordinates w, and ‘b (see Appendxx B) so thal the snmphﬁcd
zeroth-order state as gwen in (5) agrees "with the exact ze-
roth-order state as gwen in (4) to'order € but ‘which docs
not have this pathological pr6wrt‘y"“£-‘ ‘"’a'*""*"l”“ i,
Integrating (5) over all velocities we can show ‘that the
equilibrium density distribution, n =n,[ 1+ o(€?)}, is ni-
form to order €. It is possible to devise a distribution function
with density uniform to any desired higher order in ¢, but
this is not necessary here. For generality, in the following we
shall consider a nonuniform equilibrium density profile, i.e.,
ng = ng(£).

Now using the definitions
#(rye’) =exp[ — f(wt' —

k.y')yle(x'), (7a)
$(x) =fdk; exp(ik ;x' ), (K1), (Tb)
where ¢ is the electrostatic potential for the perturbed elec-

tric field and linearizing the Vlasov equation, we obtain the
perturbed distribution function

S = — B i-fo(fdk; exp[ik 1)) (k1)

+ifdk;¢k(k;)(w—k,V,)f dr'A).

€3]
wherer=1"—1,
A" X'y 7)
=expli[kix' +k, () —p) + Kk, (Z=2) ~or]},
' L9
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hk.' U —(%?/J—)

1 af,
V(£)=— %l
¢ Bu()f5r ds

Vi Il

¢ 2y ]

(10)

Here, €, = p/L, and L, = {[dno(£)/d€)/ny(£)} s the
scale length associated with the equilibrium density profile.
In order to evaluate the time integral in (8) we need the
orbits. The x component of (1) gives the net force in this
direction. Since v, is oscillatory in equilibrium, (b, ) = 0.
This leads to the expression for an average equilibrium drift
(v,} = (FVg(x)) in the y dxrccuon Now expanding Vg
around & we obtam

,.;(é’)

. v
<U,)v £(§)+ 202 (§)

<[ -V, (§)]’> + O(e).
(11

Trarlsforming the equation of motion (1) into a frame mov-
ing with (v,) in the y direction (i.e, v, —~u, =v, — (v,))
and to the spanal coordinate £ (i.e., x—»§) we obtam the

transformed equations of motion, - . _iuoe 040
,.9'( I IR : .
;, mﬁ"ax'.':,.:..m.,. frcthen boiaedie 3051 - M It
. t“ ”':- 977(5)" + [V (f)/zn]((“z) - ll,),. ._x.“rl:'ﬁ
iiee i .
) J”‘E‘E‘a"“_"h_’ U : TR SUGP PR LA ) u;:.‘,(_. ) L
N R ’
- ~:ca,w¢ ".aﬂ"g" * idgson i e
213 37y QPN

where we, have ncglected terms of 0(6" ) and hlgher These i

equatnons lead to (see Appendlx A) Al s
%’1 s ”wksrnd)

J’nﬁ.« “Bizimat )
and ok«g‘.- -A“.w

,-_'r( !

cos<l>] ; ’ '
+ (/127 0) {cos[2(® + V7 Qr)] — cos 20},
(14a)

X —x= — (wl/\[_ﬂ)[eos(\/—ﬂr+<b)

Y-y —;:‘(wl/ﬂﬂ) [sin(® + V7 Qr) —sind]
- (w/241]5'20){sm[2(¢+\/_Qr)] — sin 20}

+ (v,)7, (I4b)
Z—z=u,7, (14¢)
where

wi = v + ()l + VEE (U}, —u)/3)/Q%,
and
= Vi&Huwl/nt

Also @ = V7t + ®, where  is the velocity space angle at
t = 0. The oscillatory terms of the order  in the orbits are
not important except in the derivation of the Jacobian of
transformation from the integration variables (x,v,,v,) to
(£,w,,9), which will be necessary in the following. For sim-
plicity, therefore, we shall ignore the oscillatory terms of
O(ir) everywhere except in the derivation of the Jacobian.
This restriction can easily be relaxed.
Usmg (13) and (14) in (8) we obtam

Ganguli, Lee, and Paimadesso 824
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filxw) = —Biﬁ,(g,ﬂ)gdk; exp(ik 2x)d, (k1)

—fdk;esk(k;)_"g

where

Jo (@) (o~ k,V)expli[n'(® — a') + kLE — (k,w, /90)sin ¢>]}> 1)
(w—\[r_]n'ﬂ—k,(u,)~k,v,) ‘

o =kiw/Q kP=k}Xm+ki/m, a =tan~'(k.V;’k,), E=x+u,/90,

and J,, are Bessel functions. The projection of (15) in k, is

fu (V) = —z—ﬂ—e—Jdk; ¢k(k;)defo

™m

Jo (o), () (@ —k,V,)

X(exp[ —itk, —k)x] =3

mw— ') — k(v — k.,

chp{i[(k;—k,)g‘+(n’—n)¢+na—n’a']}) (16)

The perturbed density is then obtained by integrating the
perturbed distribution function over all velocities

ny, = — -2 fdu, dv,dv,fdxfdk;¢k(k;)ﬁ)
2rm
X {exp[itk} —k,)x] —explitk, — k,)EF},
(17)
where

F=(0—k V)Y J ('), (o)
wnw—nn —k(v,) -k,
Xexp[i(n' — n)® + ina — in'a’]. (18)

Equation (17) is the most general form for the perturbed
density for either ions or electrons. In the quasineutral limit
the most general dispersion relation for the electrostatic
waves, in the form of an integral equation, is given by
2, §exp(ik,x)n§, dk, = 0,where a represents the species.

Now we transform the integration variables in (17)
from (x,v,,0,) to (£,w,,P) using the appropriate Jacobian,
which in this case is (see Appendix B) |J| = — Jqw,; ex-
pand the exponentials in x and £ around &; and retain terms
up to O(€?) to obtain

+ o0 + = @ 2w
ny, = — NE dgj du,f dtulj dd |70,
- o (4] (V]

m —

+ = —_ 2 2
X[k oy SRLEEE A
. I
xexplitk; ~ k)]G, (19)

where

Viéut
G=(1—F)(l — ik, —k,,)—’ﬁ)i)

an*Q’
w, cos
—i(k ! — k) ———
nQ
L wocos’d
— (k! k) —— (20)
2p0-
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We shall first obtain the differential equation for the fluid
KH modes as the fluid limit of (19).

A. Low temperature but arbitrary shear

Consider k; = 0and €, = 0. For a quasineutral plasma
the condition that the net perturbed density (19) vanishes
provides the electrostatic dispersion relation. Further, since
k, = Otheelectron contribution to the net perturbed density
isignorable so that the ion perturbed density set equal to zero
leads to the desired general dispersion relation. We shall now
proceed to specialize the general dispersion relation for low
temperature (k,p, ~0). Upon ‘® integration the term pro-
portional to cos @ in G vanishes and n' becomes n in (18).
Since low temperatures are of interest we keepn =0, 1
terms in £, Higher harmonics are associated with higher or-
ders in temperature. The argument of the Bessel functions
can be written as ¢ = (w, /v,) (k, L)€ and, assuming that
the factors (k, L) and (w, /v,) are less than or of order uni-
ty, we can expand the Bessel functions to O(€?) so that

+k,((U,)—V,,)

@,

B klut (l 3 w? )
272 0° o — i’
u‘f. 1(1‘,;2_*_ ki “_z—gkal‘;
4n0°
2ik, 0, Qk ], — k)
+ 3 5 .
w7 — Q"

l——F:l—-[l

ol —*

Qn

It is important to note that under these conditions the terms
of order unity in (1 — F) drop out. Therefore, the term pro-
portional to (v,) — ¥, = Vi (w}/2Q° + pl) /27~ 0(€),
which is responsible for the KH instability, along with the
other terms of the same order, are the leading terms of (19).
This will lead to the dispersion difterential equation (22),
describing the KH modes. However, when 0~0(1), the
Bessel functions can no longer be expanded and consequent-
ly the role of the O(€7) terms, and in particular the 17 term,
will diminish in importance. This situation, which corre-

Ganguti, Lee, and Paimadesso 825
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sponds to cases in which A p, > O0(1) (€ may still be small),
may lead to a significant change in the character of the mode,
and possibly to finite gyrorac'ius stabilization of the KH in-
stability.

In order to obtain the dispersion differential equation
for the KH modes we need to obtain n (x) = [ n,
Xexp(ik x)dk, for the ions and set it equal to zero. After
carrying out the w, integration, p} can be factored out and
the resulting equation becomes temperature independent in
the p, —~0limit. The k, integration provides a delta function,
278(x — £), which makes the £ integration trivial and con-
verts the £ dependence into x dependence. Thus, performing
the £ integration after using fdk; ¢, (k )exp(ik ;&)
= ¢(£), we obtain the second-order differential equation
for the KH modes in the zero temperature limit:

d? d
— A(x) — — B(x)k!
(dx:' ) dx (k5

_kVEX) C(.t)) é(x) =0, (22)
W,
where
A(x) = [2k, Vi (0w, + 7' ()2 ]/ [l = 7(x)Q?),
(23)
B =1+ {2[(x) = 1102/ [} — n(x)Q?],  (24)
C(x) = Q¥/[w] — n(x)Q?], (25)

andw, = w — k, V¢ (x). Equation (22) is the dispersion dif-
ferential equation for the fluid KH modes valid for arbitrary
shear strength, i.e., for arbitrary values of ¥ ./, as long as
7> 0. Starting from the fluid equations one can also derive
(22). It should be noted, however, that when 7 becomes
small, the arguments of the Bessel functions become large.
Thus for 77 — 0 the expansion of the Bessel functions for small
argument may not be a good approximation unless the ion
temperatures and hence p, also become vanishingly small.
Thus if 7 is considered arbitrary then the fluid theory is valid
only when 7 > 0 and the arguments of the Bessel functions
are sufficiently small.

Pritchett and Coroniti’ used the fluid theory to obtain

]

——— — -

the dispersion cquation for the KH modes for warm plas-
mas. They mcorporated the temperature effects through the
pressure tensor and arrived at Eq. (16) of Ref. 7 as the dis-
persion differential equation. If the temperature related
terms (which are included in the factor R in their paper) are
set equal i0 zeroin Eq. (16) of their paper,” then it reduces to
our Eq. (22). At this stage, by defining a transformation
U= (w,¢' — k,0¢)/D, where D = 5 — (0,/Q)?, it can be
shown that all the 7 related terms can be transformed away
and (22) can be expressed in the form of (34), which repre-
sents the classical KH mode except that ¢(x) is replaced by
U. Thus, although the eigenfunctions are affected, the eigen-
values of the classical KH modes remain unaffected by the
magnitude of the velocity shear in the zero temperature lim-
it. This is physically satisfying, since if the gyroradius is zero
and in the absence of an equilibrium x drift, particles cannot
sample the x direction and hence cannot experience the ve-
locity shear irrespective of its magnitude. However, for finite
temperatures, the magnitude of the velocity shear will play a
role, as evidenced in the simulation results’ and the experi-
mental results of Jassby.® Unfortunately in the simple model
for the temperature assumed in Ref. 7 this cannot be ex-
plained since all the temperature related terms can also be
transformed away.” For arbitrary shears the temperature
correction to the lowest order involves a great many terms
and will be discussed in a subsequent paper. Here we make
the weak shear approximation but treat temperature as arbi-
trary and find that the finite gyroradius stabilization of the
KH modes can be understood and predicted by the kinetic
theory.

B. Weak shear but arbitrary temperature

Now we consider the limit where the shear is not strong
but temperature and k; are arbitrary. In this limit, since the
x dependence of the equilibrium quantities is weak, we can
assume A=A . in (20) so that G =1 — F. Also for weak
shears, 7~ 1 will be considered. For generality we will also
include an equilibrium density profile N(£). The perturbed
density after carrying out the ¢ integration becomes

e + ™ + o + @ + o0 4 =
N (x)= — —:ﬁf dk, exp(ikxx)J. d;"J- dw, w, J dv, J dk; ¢ (KON (Dexplith, — k)& ]
n, e -« 0 - =

- =

—~w* W ilo,)

Xexp( —_ —?—(wi + pi))(l _ s- ((IJ} + @,,

). (26)
T W, — Wy, — 1, — kv,

Here a denotes the speciesand w — &, V,, = w, + &, — ¥, wherew,, =k, V{p

2/2andw? =k, €,.p, 9, In the denomi-

o a

nator we have approximated w — k,{v,) =w, — ,, thereby replacing w? by its average value 20, . Now the w, and the v,

integrations can easily be performed to yield

e
n]a(x) — __ _ala

2mm,,

- o

+ o + o + o
j dk, exp(ik,x)J d§no(§)f dk’ ¢ (k exp[itk; — k)¢

(27)

1 wl+w2¢!‘"w:)z(
. +2( V21K 19,

w,—w2a~nﬂa)r " )]
n la A\l
\ﬁlku Vg

whereT", (b) =1, (b)exp( — b}, and I, are the modified Besse! functions and Z(¢) are the plasma dispersion functions. Here
by =pl(kl+k?2). Wecanexpand I', in k2p so that T', (b)) ~T, (b) + [, (b)kip} + -, where [, =dTl,/db and
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b =k ;p}. Since we have consistently retained terms up to €7, we neglect the terms O(k 4p? ) and higher that are of higher
order in €. Using this expansion for ', (5,) in (27) we perform the remaining integrals to obtain

1 W, + w,, — w* v, — W, — hl, 2
nmm:———z—[—z( R )z(“ : )pf.r;(bg%H
4rd e, " ‘/2[,'(” (v, 'x

where A2 = m_vl, /4mn, e, is the Debye length for the
species a. The quasineutrality condition, |e|(n,, —n,.)
= (), leads to the general dispersion differential equation for
the electrostatic modes in the low shear limit. Retaining only
the n = 0 term for the electrons and considering p; <p? we

obtain

(p,’A(x) i;,+ Q(x))as(x) =0, (29)
dx*

where

*
A(x) = — 213::.&)
E":( \/—zlklllut

w, — w; — nfl,
XZ| ———— |, (h),

30
\6!k||l'.

and

- +w, —w*
o(x) =1+ Z(ﬁ’_x__z_._)
" \[ilkuIU. ]

XZ(wl ——wz—nﬂi)r )
ko, )7

N T[l 4 (w, + w,/Ty + w‘/r)
ﬁlkulut

XZ (ﬁ;"iz/_ff‘)] ,

\/ilku fu,
Here 1 =T,/T,, t =m,/m,, and b= (k,p,)’. The sub-
scripts on w, and w*®, which are for the ions, are suppressed.
In order to recover the dispersion differential equation

for the KH modes in the weak shear limit we set @* =0,
k, =0, and retain n =0, + 1in (30) and (31) so that

2 _ L,I
Alx) = (M)ré(b) 4 (_.“'—( : :>zr;(1,)'
(e,

(30

W, — O, —wl):~! ;
(32)
and
00y =1 - [(_+_) Fo(b)

W, — @,

12
+(——(&)2F.(b)]- (33)

(0, — wy)? —

Further, if we take the low temperature limit [k p, €1, and
thus 'y~ (1 = 5). T ~b/2,Ti~ - 1, '} ~ i] and the low
frequency limit (w] /€12 € 1) in (32) and (33) and substitute
these in (29). we recover the starting differential equation
for the KH modes widely used in the literature
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ﬁ{ku [V

N Z(w, + Wy —w:)z(w, — Wy, — no, )r"(ba)] S0x),
" ﬁ‘kd lv!a Vfilkn |Um

(28)

+kyV’£’-(x)

pf)a&(x) =0. (34)
W,

For higher temperatures (k,p, > 1) the Bessel functions
can no longer be expanded and as explained earlier the terms
of the order €, such as w,, become less important. Neglect-
ing w, with respect tow, and ignoring the density gradient in
(30) and (31) werecover the starting equations for the high-
er frequency ion-cyclotron-like modes.’

il. NUMERICAL RESULTS
A. Kinetic Kelvin-Heimholitz modes

We now numerically find the eigenvalues of the general
dispersion differential equation (29), which is still in the
weak shear limit, first in the fluid limit to recover the fluid
results for the electric field profile £(x) = E, tanh(x/L).
We then use the parameters of the simulation’ to reproduce
those elements of Table I of Pritchett and Coroniti’ that are
accessible to the weak shear limit of the theory. The differen-
tial equation (29) is solved numerically by a shooting code
for the complex eigenvalues w. We assume WKB nature of
the solutions for x — oo and impose an outgoing energy flux
boundary condition. With ¢y, s and ¢y specified at the
boundaries for an initial eigenvalue w,, we use a variable
stepsize integrator to obtain ¢ and ¢’ at the origin where the
matching condition is examined. If the matching condition
is not satisfied a new w is assumed and the process iterates
until the eigenvalue is obtained with the desired accuracy.

To recover the fluid limit we consider e = 0.1, €, =0,
p=1837, Ve = (V/v,) =1, u=k;/k, = 00001, and
r=13.5. For k,p, = 0.02, 0.05, and 0.08 we obtain yL /¥

=0.1369, 0.1868, and 0.1067. These results coincide with
the fluid calculations and are consistent with the normalized
growth rate against the dimensionless wavenumber plot for
the fluid KH instability provided in Fig. 2 of Ref. 7. Thus the
fluid results are recovered from the kinetic dispersion rela-
tion for the parameter range that is fluidlike.

We now use 7 = 1, to match the simulation parameters.’
Alsosince 7 = 1,¢, = |2v,, wherec? = 2(T, + T,)/m,. For
Ve =2V /c, = 0.764 we find that the eigenvalues of (29)
fork, L =0.393and e = 0.19and 0.38 are givenby yL /VS
=0.188 and 0.191 while the corresponding eigenvalues for
Ve = 1.513 are 0.184 and 0.189. Comparing these with the
corresponding elements of Table [ in Pritchett and Coroniti’
we find that our theory is in agreement with the simulation
results.” Figures 1 (a) and 1{b) are the eigenfunction and the
profile for the external electric field, for € = 0.19 and ¥

= 0.764. For moderate shears (€<0.5) better agreement
with the simulation can be expected if the assumption of
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FIG. 1. Solution of the general dispersion differential equation (29) in the fluid limit. Here € = 0.19, k p, = 0.074, V¢ = 0.764, 4 = 1837, u = 0.0001, and
7= 1. (a) The real and imaginary parts of a typical eigenfunction. (b) The external electric field profile E(x) = E, tanh(x/L) for € = 0.19.

weak shear, i.e., k | =k, is relaxed. This will be the subject
of a future article. Higher shear values, however, are inacces-
sible to the theory at the present simplified differential equa-
tion level. For very high shears a dispersion relation in the
form of an integral equation as provided in (17) will become
necessary. Also, uncertainty in the simulation results is ex-
pected for higher shears where 7 differs significantly from
unity (but is still positive), unless the initial loading is in
accordance with the equilibrium distribution given in (4).
When shear is weak and a, = Ve [the peak value of
Ve (x)/6] is small, % is close to unity. For low tempera-
tures (€ —0). the equilibrium distribution function (4) can
be reduced to a Maxwellian shifted in the y velocity by the
magnitude of the EX B drift, which is approximatcly V. (x).
Such a distribution function was used by Pritchett and Cor-
oniti’ for the initial loadi~g. While acceptable for small a,
and e~pecially for low temperatures, this method may lead to
significant relaxation of the initial state for large «,, thereby
affecting the equilibrium parameters substantially. Thus, for
large a,, the interpretation of the final simulation results’
remains dubious. _

We now study a different electric field profile,
E(x) = E, sech®(x/L). Once again, to check the fluid limit
weusee = 0.1, 7= 1,00 = 1837, and u = 0.0001. Figure 2 is
a plot of the growth rates and the real frequency of the KH
modes as obtained from Eq. (29) (solid lines) against . The
dashed lines are the fluid results provided in Drazin and
Howard® in their Table I as sinuous mode. Good agreement
can be expected for € € 1. For larger €, however, the o, ap-
pearing in the denominator of (32) and (33) cannot be
treated as negligible. For larger €, the denominator w, can
influence the results by enhancing the growth rates. This
important temperature related effect cannot be predicted by
the fluid theory including temperature, as given by Pritchett
and Coroniti.’
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A two-dimensional particle simulation'® using an ap-
propriate initial distribution function to study the ion-cyclo-
tron-like modes is currently in progress. Ultimately we shall
compare the KH modes with the ion-cyclotron-like modes®
through numerical simulation as well as through theory.
Thus we will use 2 = 100, which is being used in our simula-
tion.'® To study the finite gyroradius stabilization of the KH
modes we plot the growth rates normalized by the ion-cyclo-
tron frequency 1, against b, for various values of u in Fig. 3.
We consider = 3.5, € = 0.43, and a mild density gradient
€, =0.05 centered around x, =133 p, such that ¢,

= —0.05for x,q —p, <X <x, +p, and 0 otherwise, and
as the dc electric field profile we consider E(x)
= E,sech?(x/L) (see Fig. 4). The growth rates of the KH
modes are expected to reduce because of the density gradi-
ent'! but with the mild €, used here this decrease was not

0 020 — T T T —T T 0.10
ootsk wooa
X
n\

0012 1008
r @r
o a

0 o8- - . 4004

. ] '
0004 oo : {002
ady Litld 1 NN N R i A1 )iyl 0
00001 0001 00% 01

b

FIG. 2. The real and imaginary frequencies normalized by 1, for the KH
instabilities for the dc electric field profile given by E = E, sech?(x/L) are
plotted as a function of b. The solid lines are the eigenvalues of Eq. (29)
while the dotted lines are the fluid results given in Ref. 9. Here € = 0.1,
7=1,u = 1837, and u = 0.0001.
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FI1G. 3. A plot of the normalized growth rates of the KH modes plotted as a
finctionof b for anumber of u values. Here e = 0.43, 4 = 100,and r = 3.5.

significant. From Fig. 3 we see that for a given € the growth
rates peak for a particular b. The peak of the spectrum is
localized for 6~0.16 (k,p,~0.4 and k,L ~0.93) and is
maximum for transverse propagation (u = 0.0001). As the
obiiqueness u is increased, there is a sharp decrease in the
peak value along with the narrowing of the spectrum. Be-
yond u = 0.0075 the growth of the KH mode is substantially
reduced.

B. lon-cyclotron-like modes

Now we consider the case where k,p, > 1. As explained
earlier, in this domain we can no longer expand the Bessel
functions, and consequently the O(€?) terms responsible for
the KH modes play only a minor role. For the range in which
we are now interested, ~here k,p, ~ 3, we can neglect these
terms for convenience. .'o explain the jon-cyclotron-like
modes we first resort to the piecewise continuous field pro-
file® (see Fig. 5). This is an idealization of the actual field
profile and we use it only to demonstrate the principles in-
volved and to obtain a good starting eigenvalue for numeri-
cally tracking the eigenvalues for a smooth profile. For a
piecewise continuous profile it is trivial to derive the nonlo-
cal dispersion relation. Sctting @, and @* equal to zero in
(30) and (31), we use (29) as the differential equation for
the modes in question. In the region over which the electric
field is localized (we shall refer to this region as region I)
there is a Doppler shift in the frequency, i.e,

Eyr}

. -l
-8 -6 -4 -2 ] 2 4 ] 8

v

FI1G 4 The equilibrium field and density configuration used in the calcula-
tions of Fig 3 Here x, =13, = -- 005 when x,—p,
v x,, +op and reco otherwise
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FIG. 5. A schematic representation of the piecewise continuous dc electric
field profile.

w—w, =o —k, Vg, while outside this region where the
electric field is nonexistent (region 11) there is no shift in the
frequency. This is the essential feature distinguishing the
two regions. The matching condition of the logarithmic de-
rivatives of the solutions of (29) at the boundary x = L /2,
provides the nonlocal dispersion relation,

—~ &y tan(k, 72€) = ix;,, (35)

where k! = Q(w,)/4(w,) and &, is identical to x, if o, is
replaced by w. For details we refer to our earlier paper.” The
dispersion relation was solved® for a wide range of param-
eters to find growing modes distinct from the KH modes. We
first give a physical description for the origin of these modes.

The dispersion relation of the electrostatic ion Bernstein
modes is®

20?

S w0l —nid
where k, ~0is assumed. The energy density of these modes
is

40T n?Q?
Uo:wiD—r—w( 3 i \=wza(w), o>0.

» “~ (wz__nzn:)zj
3M

Clearly, these are positive energy waves. Introduction of uni-
form electric field in the x direction initiates an EX B drift in
the y direction and consequently there is a Doppler shift in
the frequency, i.e, w ~o, = @ — k, V. The energy density
in the presence of the Doppler shiftis U’ ~ww,0(w,), which
can be negative provided w, < 0. Now if we consider the lo-
calized ficld configuration as shown in Fig. 5, then it is clear
that because of the E X B drift the energy density in region I
becomes negative while it remains positive in region Il. A
nonlocal wave packet can couple these two regions so that a
flow of energy from region 1 into region 11 will enable the
wave to grow. Based on this simple picture we can predict
some gross features of the instability. As for example, using
the wave-kinetic description it is possible to obtain the ener-
gy balance condition for the system from which important
scalings governing the growth rate can be predicted. The
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growth of the wave in region I implies a loss of energy from
that region. By conservation of energy, this must be the re-
sult of convection of energy into region 11 and any local ener-
gy dissipation (S _) or free energy release (S, ) processes in
region I. The rate of growth of the total energy deficit in
region lis proportional to the growth rate j. the wave energy
density U, in region 1, and the volume of region I, represent-
ed here by the extent in the x direction (L) of region I times a
unit area 4, in the plane perpendicular to x. The rate of
convection through 4, is just ¥V Uy, where ¥ is the group
velocity in the x direction and Uy, is the wave energy density
in region 11. We can then write the energy balance condition
as

YU LA, =(S, —S_ — VU4, (38)

where S, and S_ represent the source and the sink in region
I. The eigenvalues obtained from (35) are expected to satisfy
the energy condition (38). For the situation presently under
consideration we do not have any external source of free
energy and since kK, ~0, the natural dampings are absent.
Therefore S, = S_ = 0. Now it is clear from (38) that if U,
is negative then ¥ can be positive and hence the growth of the
wave is sustained by convection of energy into region II from
region I. On the other hand if U, is positive then the convec-
tion of energy out of region I would lead to a negative growth
rate and therefore to damping of the waves. For §, =0, an
important scaling can be predicted from (38), i.e, ¥/ Vg
« 1/L, which with proper normalizations can be written as
Im(k,p,) <€ InFig. 6 we plot Im(k, p,) against € and con-
firm this scaling. In Fig. 6 other paramelers arc ¥, = 2.9,

0.20 T T

0.16f 4
0.14}+ 1
Im(k.p,)
012} ]
0.10r
0.08- h

006+ p

004} 4

0.02 1 2
0 0.05 0.10

€ -

FI1G. 6. A plot of Im(k,p,) against €. The lincar dependence confirms the
scaling 3/ Vg a 1/L. Here e =29, 7= 1, u = 0.0001, and ;= 1837.
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7= 1,u =0.00C1, ;1 = 1837, and the growth rutes have been
maximized in b.

We shall now study the ion-cyclotron-like modes for
smooth profiles. For this we use an electric field profile given
by

E(x) = E /|4 sinh®(x/a) + 1], (39)

where 4 = 1/sinh?(x,/a) and x, = L /2. Fora—0(39) rep-
resents a *‘top hat"” profile that reduces to half of its peak
value at x = x,. Asa increases the profile becomes smoother,
and ultimately, when a = x,/sinh~' (1), which makes
A =1, expression (39) reduces to E(x) = E, sech?(x/a).
The shooting code used for the determination of the eigen-
values can operate best when the initial guess for the eigen-
value is not too far away from the actual one. Thus it be-
comes necessary to use (39) so thatin the limit -0 we have
excellent guess values obtained analytically from the nonlo-
cal dispersion relation (35). Starting with the eigenvalue for
the @ — 0 case we slowly increase a to track the eigenvalues
for the profiles with the desired smoothness. For 6~ 8 we
havetoretainn=0,+ 1,4+ 2,43, + 4, + 5, + 6 harmon-
ics and the ascociated plasma dispersion functions in (29)
that are evaluated numerically; thus the computations for
each eigenvalue is CPU time intensive.

In Figs. 7(a)-7(d) we display the transition of the elec-

tric field profile from nearly piecewise continuous to smooth
for four different values of a. Here € = 0.3. In Figs. 8(a)-
8(d) we display the corresponding wave packets. Other pa-
rametersare b = 8, 7 = 3.5, u = 0.011, u = 1837, ¥ = 0.6,
X, =166p, and €, = —0.07 if x4 —09p, <x<x,
+ 0.9p, and zero otherwise. The growth rates did not vary
much during this transition. For a = 0.1, 0.707, 1.41, and
1.89 the corresponding growth rates normalized by the ion-
cyclotron frequency ¥/, = 0.048, 0.05, 0.037, and 0.031.
There is only a 409 reduction in the growth rate from the
sharp to smooth profile, and initially in going from a + 0.1
toa = 0.707 there is a slight increase in the growth rate. This
is in contrast to the KH instability where the growth rates
are dependent on the second derivative of the electric field
and are therefore very sensitive to the scale size vanation.

In Fig. 9 we provide a plot of the growth rate and the real
frequency of the ion-cyclotron-like modes normalized by the
ion gyrofrequency as a function of b. Here the profile in (39)
isused witha = 1.87 and the rest of the parameters are iden-
tical to Fig. 8. We find that the instability is peaked around
k.p, ~3, which for e = 0.3 corresponds to k, L ~ 10 which is
an order of magnitude larger than the corresponding value
of the peak for the KH modes. Further for « = 0.011 used
here, the KH modes ~re expected to be nonexistent and thus
the domain for dominance for the two modes can be quite
distinct. This contradicts the conclusion in Ref. 12 where a
simulation based on only one set of parameters obtained
from the idealized field profile® was used to conclude that the
KH mode will always dominate the ion-cyclotron-like
modes. Further the initial loading in the simulation'? (as-
sumed to be similar to that of Ref. 7) is improper since a, for
the parameters used was extremely large (greater than uni-
ty), and consequently the simulation'? showed a strong re-
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FIG. 7. The transition from a sharp to a smooth profile given in Eq. (39). Heree =0.3and (a)a =01, (b) a =0.707, (¢) a = 1.41, and (d) a = 1.89.

laxation of the initial nonequilibrium velocity profile.

In Fig. 10 we use the parameters for our simulation'® (to
be discussed in a separate article), i.e.,, g = 100, 7 = 3.5,
€=043, ©u=0038, ¢, = —005 for x,, —p, <X <X,
+ p, and 0 otherwise and x,, = 1.33p, to plot the growth
rate and the real frequency normalized by the ion gyrofre-
quency. Here for completeness we also include the w, term in
(29) to compute the growth rates and use exactly the same
dc electric field and density profiles as were used to produce
Fig. 3. The inclusion of the w, term does not change the
eigenvalue by much. The peak of the spectrum is around
b~14. In Fig. 3 we used the same parameters to conclude
that the growth rate for the KH modes is reduced signifi-
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cantly for u»0.0075 and the peak of the spectrum is around
b~0.2. Once again the domains of dominance for the KH
and the ion-cyclotron-like modes are quite distinct.

Finally in Fig. 11 we provide a plot of the real and imagi-
nary parts of the eigenfrequency @ normalized by the ion
gyrofrequency €, as a function of ¥, the peak value of the
equilibrium E X B drift velocity normalized by the ion ther-
mal velocity. Here 6 =10, 7= 3.5, u = 1837, u = 0.011,
€=03, x,=166p, €, = —007 when x4, —09p,
<x<x,9 + 0.9, and 0 otherwise. For the external electric
profile we use (39) with a = 1.87. We see that the real fre-
quency is almost linearly proportional to ¥, which is in
keeping with the experimental results of Sato et al.?
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IV. DISCUSSION

We have provided a kinetic theory to study the electro-
static waves that can be excited in a collisionless magnetized
warm plasma by a transverse velocity shear. For k p, €1 we
recover the fluid KH modes and when k p, is increased we
find that the growth rates for the KH modes are reduced and
for large enough k p, the KH instability is completely
damped. Further, the growth of the KH modes is severely
affected by the parallel dynamics. It seems that for a colli-
sionless plasma the KH modes can grow only for very small
k,. As k,p, becomes of order unity the expansion of the
Bessel functions is no longer possible. Consequently the
terms of O(€) responsible for the KH modes diminish in
importance. At this point the large k,p, ion-cyclotron-like
modes dominate. Further, larger k; and density gradients
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inhibit the classical KH wave growth while both these effects
favor the ion-cyclotron-like waves.

An important feature of the ion-cyclotron-like modes is
the fact that the real frequency of these waves is roughly
around k, V'%/2 (see Figs. 9 and 11). This is similar to the
KH waves, and therefore the two instabilities cannot be dis-
tinguished by the scaling of the real frequency with k V.

The linear dependence of the real frequency of the ion-
cyclotron-like modes on the dc electric field was not explicit-
ly discussed in our previous paper.® This could have contrib-
uted to a misunderstanding, which led Pritchett'? to
conclude that since the modes in his simulation for p,/L
= 0.3 and for k,p, = 0.47 and 0.94 displayed the linear de-
pendence of the real frequency on the equilibrium flow ve-
locity they could not be the ion-cyclotron-like modes that we
have discussed. A similar misunderstanding was also dis-
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FIG. 9. A plot of the normalized real and imaginary parts of the eigenfre-
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played by Sato er al. in discussing their experimental results.

Since the initial electric field profile used in the simula-
tion described in Ref. 12 was not in equilibrium, the system
immediately relaxed [see Appendix A, condition (A21);
here'?a, = (p,/a) Vg = (2.4)3 = 7.2» 1] to what is shown
in Fig. 4 of Ref. 12. This is very different from the initial
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4 5 6 8 10 20 30 40 50

FIG. 10. A plot similar to Fig. 9. Here u = 0.038 and the rest of the param-
eters are identical to Fig. 3.
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FIG. 11. The normalized real and imaginary parts of the eigenfrequency of
the ion-cyclotron-like waves plotted against V. Here =10, r= 1.5,
p=1837, u=0011, €=03,a=187 and ¢, = — 007 if x,, — 0.9,
<X <X, + 0.9p, and zero otherwise.

profile described in their'? Eq. (2). In fact, the initial profile
is characterized by two scale lengths L and a with a peak
value of about 3v, while the final relaxed profile is more like a
Gaussian or a sech?(x/L) type characterized by only one
scale length L and with a peak value of around 2v,. Also, as
explained,'? the spatial extent L of the electric field increased
during the course of the simulation. Conservatively estimat-
ing the broadening of L by only 20%, and considering that
the final profile is approximately similar to sech? (x/L) with
pi/L =0.25, then the modes at k,p; = 0.47 and 0.94 would
correspond to k, L = 1.88 and 3.76, respectively. These val-
ues will be larger if the spatial extent is broadened more than
the 209 assumed. As we have shown through the analysis of
the kinetic KH modes and Drazin and Howard® through the
analysis of the fluid KH modes for shear profile of the type
sech’(x/L), the KH modes are strongly damped for k, L > 1
and almost nonexistent beyond k,L ~2. Thus the mode at
k,p; = 0.47 can be the tail end of the KH spectrum but the
mode at k,p, = 0.94 seems to be completely out of the theo-
retically predicted KH spectrum and the growth rate in the
second mode is higher. Hence, the conclusion based on the
simulations of Ref. 12 that the KH mode will always domi-
nate over the ion-cyclotron-like modes for a configuration
with a localized electric field perpendicular to an external
magnetic field is at best dubious. However, we do agree with
the other conclusion'? that the idealized field profile
(piecewise continuous) used earlier’ to demonstrate the
physical principles involved is not suitable for simulation
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purposes and that a strong relaxation from such a profile to a
smocther profile is likely. The fact that the piecewise contin-
uous field profile is an idealization was emphasized in our
earlier paper.® Here we have provided an equilibrium distri-
bution (4) that, if properly loaded, should ensure a good
equilibrium even for moderate shears. Since the equilibrium
distribution as provided in (4), is an implicit function of £,
the guiding center position, it is not in a convenient form for
initial loading in a particle simulation. For this purpose we
will express (4) in terms of the real position x. From the
definition (3) for £ we obtain

E—x=[v, — Ve (£)]/Q. (40)
Expanding Vg (£) around x we can show iteratively that
E—x=[v, — Ve(x)]/n(x)Q

— [Vex) 29700 [v, — V()% (41
Comparing (40) and (41) we find that
v, — V(&) = [U,—Vg(x)]/n(x)+0(€2)- (42)

By definition 4, = v, — (v,) and using (42) along with the
expression (11) for (v}, we can express u,
= [v, — Vs(x)]/7(x) — O(€). Also expanding 7(£)
around x it can be shown that 77(£) = 7(x) + O(¢). Using
these to express w} provided in (6), in terms of x we obtain

wl =02 + [, — Ve(x)]Y/7(x) + O(e), (43)

and therefore the equilibrium distribution expressed in
terms of x becomes fy=nof, foy, Where fy

= JB/2m exp( — Bv?/2) and

_E(vg A Ol Vdm’)]
2\ 7(x)

X (n(x))~'[1 +0Ce)). (44)
It should be noted that when expressed in terms of x the 7
dependence in w} changes from multiplying the y compo-
nent of the velocity to dividing it. The distribution given in
(44) is the zeroth-order distribution function. The correc-
tion to order € is given in Appendix C.

Consider the case where a, = V%/L(Q, the pcak value
of the quantity ¥/, is much smaller than unity (weak
shear). Now 77— 1 and if O(¢€) corrections are to be ignored,
then (44) becomes a Maxwellian shifted by the magnitude of
the E X B velocity in the y direction. Such a distribution was
used by Pritchett and Coroniti’ and is acceptable for weak
shears (a, €1) especially for low temperatures. To find the
correction duetoa,, we express 1/n(x) =1 — V. /Q along
with the assumption that the temperature of the system will
also be affected so that S—f + 688 such that
8~0(V,/Q). Using these approximations and
OB = BV /2  we can express (44) as

Jor = (B/2m)exp( — (B/D{v} + [v, — V() ]*})

X{1+ [BV g (x)/402]{[v, — Vg (x)]* = vZ})
(45)

2rfor =B exp

The correction term proportional to a, was also discussed in
Ref. 7, but it was not used for the initial loading b>cause it
was expected that the system would make the necessary ad-
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justments and that these would be sinall, as long as a, €1.
Thus as long as a, is small the use of a shifted Maxwellian
appears 1o be acceptable, although (45) describes a better
initial distribution. For moderate shears, however, the parti-
cle loading should be in accordance with (44), otherwise
strong relaxation from the initial profile'? will be inescap-
able. Such strong relaxation from a nonequilibrium starting
condition is invariably accompanied by substantial free ener-
gy release, which leads to a dynamic state quite different
from the quiet equilibrium essential for simulation of an in-
stability. A further improved initial distribution function
with the O{¢€) corrections included is provided in Appendix
C.

It should be remarked that in most of the experimenis*
and space observations® there exists a magnetic field aligned
current in addition to the transverse localized electric fields.
In the case of an oblique double layer the magnetic field
aligned current can originate from the dc electric field com-
ponent in the direction of the magnetic field provided there
are some collisions. As, for example, in the experiments of
Alport et al.* the double layer has a component in the direc-
tion of the external magnetic field that is larger than the
perpendicular component, thereby providing a large mag-
netic field aligned current. Further, in some recent space
observations'? ion-cyclotron-like oscillations have been re-
ported in conjunction with simultaneous observation of a
perpendicular component of a dc electric field and a magnet-
ic field aligned current for situations where the magnitude of
the magnetic field aligned current is below the threshold nec-
essary for the excitation of the current driven ion-cyclotron
instability." A recent study'* on the effect of the perpendic-
ular electric field on the current driven ion-cyclotron insta-
bility** indicates that the perpendicular component of the
electric field can lower the threshold for the current driven
ion-cyclotron instability. The necessary condition for the
current driven ion-cyclotron instability is that the parallel
phase velocity w/k, of the ion-cyclotron waves resonate
with the parallel electron drift V,, such that
(0 — k; V4) <0. For subcritical V,, (w — k,V,)>0, and
therefore the Landau damping cannot be inverted.'* For
simplicity again consider the idealized field profile as given
in Fig. 5. The introduction of the perpendicular component
of the electric field initiates an EXB drift and consequently
there is a Doppler shift in the frequency w, i.e,
w—w, = — k, Vg, in region I over which the electric field
is localized in the perpendicular direction. Now the neces-
sary condition for the onset of the current driven ion-cyclo-
tron instability in region I becomes (w, — k; ¥4) <0, which
can be satisfied even though (@ — k" V,) remains positive.
Thus the threshold value for the magnetic field aligned drift
V, necessary for the onset of the current driven ion-cyclo-
tron instability is lowered.

For the cases where there is a magnetic field aligned
drift in addition to the transverse localized electric field, the
term S, in (38) is not zero and can roughly be estimated
(using the local theory) to be proportional to LU, y,, where
the local growth rate in the region 1, ¥, = — Q,/Qg.,, i5
evaluated at @ = w,. Here Qg and Q, are the real and the
imaginary parts of the local dispersion relation identical to
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" the expression give 1|n (31) withw, and w* set equal to zero,

and Qp,, is the w derivative of Q. In the ion rest frame the
field aligned drift ¥, provides an additional Doppler shift in
the electron term so that @, is proportional to (w, — &, V).
Assuming that the field aligned current is also localized
within the region I so that Qg, = U; /0, we can write the
energy balance condition as

VLA, Uy = — (0, — ky V), LA, — VoUyA,.  (46)

We have neglected the ion Landau and cyclotron dampings.
First consider the case where the electric field is not strong
enough to make ¢, <0 and therefore U, >0 but o, is less
than w. Since w, <o it is possible to have (v, — k, V) <0
when (@ — k, V;) >0 and hence the first term in the right-
hand side of (46) provides a growth even for subcritical ¥,
while the convection leads to damping. Now if w, <0 and
consequently U, <0, the convection will lead to growth and
the first term in the right-hand side will contribute to damp-
ing. However, if k; ¥, <0 (which can be achieved by keep-
ing ¥, constant but changing the direction of paraliel propa-
gation or vice versa) growth in region I may be expected
from both the right-hand terms for (@, — &, ¥,) > 0. This
can be a likely scenario for most of the experiments and space
observations involving the ion-cyclotron-like osciltations for
an equilibrium that contains a dc electric field in addition to
a uniform magnetic field. More details will be provided else-
where.

V. CONCLUSIONS

Using a kinetic approach we have studied the generation
mechanisms for the electrostatic waves in a magnetized
warm plasma including a dc electric field perpendicular to
the external magnetic field. Two distinct generation mecha-
nisms are discussed: (i) the Kelvin-Helmholtz mechanism
and (ii) the positive-negative energy wave coupling mecha-
nism. The Kelvin-Helmholtz mechanism, first discussed
about a century ago,’ depends directly on the second deriva-
tive of the dc electric field while the other mechanism® de-
pends on the inhomogeneity in the energy density of the
waves. The KH instability can dominate for small k, p, if the
propagation is nearly perpendicular. For a collisionless plas-
ma the KH instability is strongly damped even if k; is a tiny
fraction of k,. In the theory we have shown that the terms
responsible for the KH wave growth are proportional to
V 2 (x) and are of order .. Only when k,p, <1 can the Bes-
sel functions be expanded for small argument and the order
unity terms be dropped out, thereby making the order €
terms primary. This then assures the dominance of the KH
instability. When k,p, is increased and is of the order of or
greater than unity the Bessel functions can no longer be ex-
panded and consequently the order € terms responsible for
the KH waves cannot gain prominence. At this stage inho-
mogeneous energy density driven modes® dominate. Also,
the dominance of the KH modes can be reduced even for
small k,p, if more oblique propagation (larger k; ) is consid-
ered. Here we have also shown that the inhomogeneous ener-
gy density driven modes can tolerate Jarger k. Thus the two
modes are quite distinct and, depending on the parameter
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range (system size, temperature, density gradient, ete.) one
or tise other can dominate.

It should be pointed out that while the interpretation of
the inhomogeneous energy density driven modes is quite
convincing for the “top hat"”-like profiles as evidenced in
Fig. 6, it is not so clear cut for the smooth profiles. As the
profile is made smoother, additional physics is introduced
through various resonances that are now possible since o,
can now vary smoothly over a wide range of values as op-
posed to one constant value in region I and a different con-
stant value in region II for the “top hat" profile. Geometry
related effects can also play a role. It was also noted that as
the smoothness of the profile was increased it was necessary
to maintain a very small amount of the density gradient in
the transition zone in which the electric field is reducing to
zero, to preserve the growth rates. This, however, makes the
model more physcial since in actual experiments (e.g., sce
Alport et al.*) a density gradient is present in the transition
zone. It appears that the density gradient acts as a catalyst by
maintaining the growth rate without much affecting thc real
frequency, although the exact role that the density gradient
plays s yet to be fully appreciated. The important conclusion
however, is the fact that besides the KH instability there is
another branch that can also grow with shorter wavelengths
and higher frequency in a plasma immersed in a uniform
magnetic field with a nonuniform transverse electric field.

Finally we would like to point out that in the small k,p,
limit the integral equation can be exactly reduced to the sec-
ond-order differential equation (22). Thus the second-order
differential equation level of description to study the nonlo-
cal wave dispersion properties employed in this paper is
more accurate for the KH modes than the ion-cyclotron-like
modes that grow for large k,p,. For greater accuracy the
eigenvalues of the integral equation that will result by using
(17) as the perturbed density must be obtained. This will be
the topic of a future article.
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APPENDIX A: PARTICLE ORBITS IN A UNIFORM
MAGNETIC FIELD AND A TRANSVERSE NONUNIFORM
ELECTRIC FIELD
In this appendix we provide the derivation of the parti-
cle orbits to O(€?). The x and y component of the equation of
motion (1) can be written as
b, = v, — QVe(x),

b, = —Qu,,

(AD)
(A2)

where V. (x) = — cE(x)/B,. Expressing (A1) in the guid-
ing center frame £, and retaining terms up to O(€’) we ob-
tain

by = QAE v, = Ve ()]
—{{v, = V(O )2V ) + 0(eD)). (AD)
We now transform { A2) and (A3) toa frame moving with a
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velocity (v, ) in the y direction (i.e, v, —u, 4 (v, )) so that
b= Qi + (O [(e) = V()]

—{[u, + () = V(O 2071 5(8). (A4)
An expression for (r,) was given in Eq. (11) in the text.
Replacing v, by u, + (v, ) inthe right-hand side of (11), we
find that (v,) — Vg (&) = V(&) ()20 + O(€Y).
Substituting this in (A4) and transforming v, to u, + (v, )

in (A2), we obtain the equations of motion in the trans-
formed frames to O(€7):

b =)0, + [VE(£)/20]({u2) —u?),  (AS)
u, = —Qu,. (A6)
Note that for a linear field, V% =0 and (AS5) and (A6)
reduce to a form very similar to that of the equations of
motion for zero electric field except for the factor 7(£) in

(A5), which is a constant for a linear field. For V' = Qitis
fairly easy to solve the equations of motion and we can obtain

u, = A cos b, where ¢ = 7707 + ® and 4 is proportional
to w,. Thus for F3#0 we assume w,=Acosd
+ B cos 2¢, where B = O(€?). Differentiating (A6) once
and using (AS) for b, we obtain

i, = —Qb,

= — (&)W, — [V(£)/2](ul) —ul). (AT)

Substituting u, = 4 cos ¢ + B cos 29, in the left- and the
right-hand sides of (A7) we find

lhs = — (&)W A cos P — 45(£)S¥B cos 2P,

ths = — (£)Q4 cos

— {7 VB - [V(£)A% /4] cos 20, (A9)

where we have neglected terms smaller than O(€?). Com-
paring the lhs and the rhs we find that

(A8)

B= —Vy&HAY/129(6)0% (A10)
Thus
u, =Acos®— [Vi(£)A/129(£)Q% Jcos 20,  (All)
7 ViEral
v, = —u—’=\f77Asin¢—L(§:)—-sin 29 (A12)
Q 6/ Q?

The constant A is still undetermined.
After multiplying Equation (A7) by i, it can be written

d i u: V;'.(t)(u’, )]
il Bt [P LR IRLAN Bt ANY FFL = 0.
dr[l ) 2 2 3 Gy,

as

Using (A6) we can eliminate &, from (A13) and define a
constant w? as

w] = vk + (&)}
— [VEG/QV) [(u/3) = (uldu,].  (Al4)

Substituting u, and v, from (All) and (A12) into (A14)
and retaining terms up to O(e?) it can be shown that

A =w, /5. Thus,
v, = w, sin® — [V (HHw]/67(£)>20% ]sin 20,
(A1S5)
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w N
u, = (*:_ﬁ_ cos b — [ 177 (£)wl/120(£)° Q7 [cos 2.
V(&
(A16)

With the velocities known it is a simple matter to obtain
the positions,

.
x’—x=J v, dx
1

w

=1 (cos P —cos P)
\7)(X)Q
V" 2
ﬂ—(cos 29" —cos 29).  (AlT)
129(£)'0°

Rewriting®’ = J7Qt' + & = {707 + &, wherer ="' —¢
and ¢ = \/—ﬁﬂt + &, we obtain

X —x=—[w/AN&Q]
X [costyn (€Y 2 + D) — cos ®]
+ [@/129(6)*Q]

Xfcos{2[® + V(5 Qr]} —cos29),  (A18)

where v = ¥V (£)w? /Q% Similarly p' — y can also be ob-
tained. {t should be noted that when 7 <0, the orbits become
unstable.

For computer simulations where a distribution of parti-
cles is under consideration we can obtain an order of magni-
tude restriction necessary for the stability of the orbit of a
typical particle (characterized by a velocity v,, the thermal
velocity, and a displacement p, the gyroradius). From (A3)
it is clear that as long as the first term in the right-hand side,
which is of order v,, is dominant, the form of (A3) is

x = — Q¥(&)y + corrections, (A1)

where y = (£ — x) = [y, — V(£)]/9. Therefore the re-
storing force is proportional to the displacement. This en-
sures periodic orbits that are stable. On the other hand if the
second term in the right-hand side of (A3), which is propor-
tional to vV % (£)/Q? dominates, then (A3) is of the form

x = Q[ Vi(£)/2]x* + corrections. (A20)

The restoring force is now proportional to the square of the
displacement. Hence the orbits are no longer periodic and
therefore become unstable. Thus as long as the second term
of (A3) remains smaller than the first term, i.e., 02V 2 (£)/
2Q2 < n(&)v,, we can expect stable orbits for the typical par-
ticles. This restriction leads to the condition for stable orbits
in a simulation:

p/R(E) < [200(E)/V:(6)]'7, (A21)

where R(£) is the local radius of curvature
(= [IVe(&)/V £(£)]]'). Simplifying (A21) by replacing
the guiding center position £ by the real position x and con-

sidering the electric field profiles of the form
Ve(x) = VS f(x/L), we can define H{(x) such that
H(x) = [(20,/V) + 2¢f' (x))'?
— e[| /xR, (A22)
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where ¥ = x/L and € = p/L. In order to have stable orbits
and avoid (or minimize) relaxation of the initial electric
field profile used in a computer simulation, F/(.x) should be
positive for all x. If this condition is violated then the orbits
will become unstable and the profile will relax until (A21) is
satisfied.

APPENDIX B: THE JACOBIAN OF TRANSFORMATION
IN THE VELOCITY VARIABLES

In this appendix we evaluate the Jacobian of transfor-
mation from the coordinates (x,v.,0,) to the coordinates
(&,w,,®). This Jacobian can be written as

dx Jx ox
av, v, av,
Al 1T P v SR Y P (BL)
du, av, v,
_a.g w® .‘E X D wid

Using the definition of £ as given in Eq. (3) in the text
we can evaluate the elements of the first row so that

oL 1% 1y
Q& Q Jdu, Q Job
dv, v, av,
- ER e, a |’
dv, dv, dv,
?9? Jw, ED)

(B2)

where we have suppressed the subscripts. Multiplying the
last row by 1/(2 and adding it to the first row we obtain

&) O 0

dv, dv, dv,
J=1| 08¢ dw, I®|. (B3)
dv, dv, v, :

:9? dw, Jd
Thus the determinant has been considerabiy simplified and
can be expanded as

dv '
szg)( v, d, v, au,>_

Jw, ) dw,
Recall that v, = u, + (v,) and using the expressions
for v, and u, from (A15) and (A16), and using equation
(11) from the text for {v,) we obtain

v =w, sin® — [V} /6n(£)Y 07 )sin2d,  (BS)

{B4)

w
v, = L _cos b+ V(&) +

Viéuw (1 _cos 2(13)
(& &)’

3
(B6)
The derivatives nccessary in (B4) can be easily ob-
tained, and retaining terms up to O(€?) we have

dv, ; Vil
= sin b — — s
dw, In(&HVe®

sin 2, (B7)
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v Ve 2
Zro W sin(b+——L§)2Lf)-l¢sin2(b, (B8)
ad V(&) 6n (&)
v, ViHw
'aTb'=wl Cos‘b—;"&—)—llz—(;—z‘cosz(b, (Bg)
dv Vi
y _ cos® + s(§)2w12( _coszd))‘ (BI0)
dw,  Jp(&) 26N \ 3
Using (B7)-(B10) in (B4) we obtain
J= —In(&rw,. (B1l1)

APPENDIX C: EQUILIBRIUM DISTRIBUTION WITH
ORDER ¢ CORRECTION

In this appendix we provide an equilibrium distribution
function suitable for initial loading for a particle simulation
studying the electrostatic waves due to an equilibrium field
configuration containing a uniform magnetic field and a per-
pendicular component of a nonuniform electric field. We
shall include the corrections that are of the order e but ignore
the order € corrections for the time being. Expanding 7 (&)
around x weobtain 7(£) = p(x) + (£ —x)n'(x) + O(€?),
where ' = V' £/Q. Using (41) for (£ —x) we can write
down

WE) = q0x) + {[v, = Ve 1))}V i (x)/0
+ O(€). (cn

Also from the expression for u, given in (A16) we find that
the time average (u;) = w] /257(£)- Expressed in terms of x,

(u3) =wi{l — [v, = Ve () ]V £ (/7" () Q7}/ 29(x)
+ 0(€%).

Using this and (C1) in the expression for w? as provided in
(6) we have

[Uy - VE(X)]2

wi =”i+“—n§)—_+[”’_yfml
(vi [o, = Ve ]\ Vi)
X -_——
2 mx) o0
+0(ed). (€2)

Using (C2) in the expression for fo, and expanding the O(¢)
terms we obtain

o~V ? _
I L (R U | [ TR
2 2 7(x)

2
x{l—[v,—VE(x)][l+B(v—2"—

- Vs(x)]z)] Vi(x)
2n(x) 27 (x)Q?

+O(€2)l'
(C))

If the O(€) termin (C3) is set equal to zero we recover (44).
For even greater accuracy it is possible to obtain the O(€?)
corrections also.
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